Search results for "Hyphal growth"

showing 10 items of 11 documents

Rhizoctonia solani AG 11 isolated for the first time from sugar beet in Poland

2020

Abstract Two isolates of Rhizoctonia solani AG11 were isolated from sugar beet seedlings from South-west Poland. Both isolates gave C2 reactions in anastomose pairings with the tester isolates of AG11. The membership of both isolates to AG11 was confirmed by analysis of pectic isozyme profiles, and by verification that the internal transcribed spacer sequences of both isolates matched the references in the GenBank database. Both AG11 isolates formed white-beige to creamy-colored mycelium with wide concentric zonation. One of them formed light-colored sclerotia. The average daily rate of hyphal growth at 21 °C was 22.8 mm and 22.6 mm on PDA. They were mildly pathogenic to sugar beet seedling…

0106 biological sciences0301 basic medicineHyphal growthThiramFungicide01 natural sciencesArticleRhizoctonia solani03 medical and health scienceschemistry.chemical_compoundInternal transcribed spacerlcsh:QH301-705.5MyceliumPlant diseasebiologyRhizoctonia solaniSugar beetfungifood and beveragesbiology.organism_classificationPlant diseaseFungicideHorticulture030104 developmental biologylcsh:Biology (General)chemistrySugar beetPolandGeneral Agricultural and Biological Sciences010606 plant biology & botanyAG11Saudi Journal of Biological Sciences
researchProduct

Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes

2009

Reticulitermes flavipes workers were individually inoculated with 10,000 conidia of the entomopathogenic fungus Metarhizium anisopliae. After being kept in groups of 20 individuals for 1–6 d, histopathological approach showed that most of the inoculated conidia were groomed from the surface of the cuticle by nestmates within 24 h, and that a large number of conidia was subsequently found in different parts of the gut of the groomers. Our observations showed that, among thousands of conidia found in the termite's gut, conidial germination never occurred in all inspected specimens, even when the conidia had the chance to bind to the surface of the cuticular lining of the gut. In addition, whe…

0106 biological sciencesHyphal growthMetarhiziumMetarhizium anisopliaeIsoptera01 natural sciencesConidiumMicrobiology03 medical and health sciencesReticulitermesSpore germinationAnimalsSocial BehaviorEcology Evolution Behavior and Systematics030304 developmental biology0303 health sciencesbiologyfungibiology.organism_classificationGroomingImmunity InnateTermite Metarhizium Disease resistance Antifungal activity Gut010602 entomologyEastern subterranean termiteMetarhizium[SDE.BE]Environmental Sciences/Biodiversity and EcologyDigestive SystemRhinotermitidae
researchProduct

Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici

2017

A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify gene…

0301 basic medicineHyphal growthMutantlcsh:MedicinePlant SciencePathogenesisPathology and Laboratory MedicineDatabase and Informatics MethodsMedicine and Health Scienceslcsh:ScienceGeneticsMultidisciplinaryVirulenceOrganic CompoundsPlant Fungal PathogensFungal geneticsGenomicsGenomic DatabasesMutant StrainsChemistryPhysical SciencesResearch ArticleGene predictionGenes Fungal030106 microbiologyPlant PathogensMycologyBiologyResearch and Analysis MethodsFungal ProteinsInsertional mutagenesis03 medical and health sciencesAscomycotaGeneticsFungal GeneticsGene PredictionGeneOrganic Chemistrylcsh:ROrganismsFungiChemical CompoundsBiology and Life SciencesComputational BiologyPlant PathologyGenome AnalysisForward geneticsReverse geneticsBiological DatabasesPurinesMutationlcsh:QPLOS ONE
researchProduct

A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans.

1998

The Candida albicans MKC1 gene encodes a mitogen-activated protein (MAP) kinase, which has been cloned by complementation of the lytic phenotype associated with Saccharomyces cerevisiae slt2 (mpk1) mutants. In this work, the physiological role of this MAP kinase in the pathogenic fungus C. albicans was characterized and a role for MKC1 in the biogenesis of the cell wall suggested based on the following criteria. First, C. albicans mkc1Δ/mkc1Δ strains displayed alterations in their cell surfaces under specific conditions as evidenced by scanning electron microscopy. Second, an increase in specific cell wall epitopes (O-glycosylated mannoprotein) was shown by confocal microscopy in mkc1Δ/mkc1…

Antifungal AgentsTranscription GeneticSaccharomyces cerevisiaeMutantMAP Kinase Kinase 2MAP Kinase Kinase 1ChitinSaccharomyces cerevisiaeProtein Serine-Threonine KinasesMicrobiologyGene Expression Regulation EnzymologicFungal ProteinsPseudohyphal growthCell WallGene Expression Regulation FungalCandida albicansCandida albicansDNA FungalFluorescent Antibody Technique IndirectGlucansProtein Kinase CMitogen-Activated Protein Kinase KinasesRecombination GeneticMembrane GlycoproteinsMicroscopy ConfocalbiologyKinaseProtein-Tyrosine Kinasesbiology.organism_classificationFlow Cytometrybeta-GalactosidaseCorpus albicansComplementationMicroscopy ElectronBiochemistryMitogen-activated protein kinaseCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinMicroscopy Electron ScanningMitogen-Activated Protein KinasesPlasmidsMicrobiology (Reading, England)
researchProduct

Crowdsourced analysis of fungal growth and branching on microfluidic platforms

2021

Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the “Fungus Olympics.” The competing fungi included five ascomycete species (ten strains total), two basidiomycete…

Aspergillus NidulansHyphal growthMicrofluidicsYeast and Fungal ModelsmikrofluidistiikkaPathology and Laboratory MedicineBranching (linguistics)Microbial PhysiologyMedicine and Health SciencesBiological Phenomenamedia_commonFungal Pathogensmicrofluidic platformsMultidisciplinaryOrganic CompoundsQMonosaccharidesRMicrobial Growth and DevelopmentEukaryotaMicrofluidic Analytical TechniquesChemistryAspergillusAspergillus FumigatusExperimental Organism SystemsFungal MoldsMedical MicrobiologyPhysical SciencesMedicineEngineering and TechnologyCrowdsourcingcrowdsourcingFluidicsPathogenssienetBiological systemResearch ArticlesienirihmastotFungal GrowthFungal growthGeneral Science & TechnologySciencemedia_common.quotation_subjectCarbohydratesHyphaeMycologyBiologyResearch and Analysis Methodsfungal growthkasvuMicrobiologyCompetition (biology)AscomycotaSpecies SpecificitybranchingMicrobial PathogensBasidiomycotaOrganic ChemistryfungiOrganismsChemical CompoundsFungiSustained growthBiology and Life SciencesCollective workYeastGlucosejoukkoistaminenAnimal StudiesLinear growthDevelopmental BiologyFungal hyphaePLOS ONE
researchProduct

Tissue invasiveness and non-acidic pH in human candidiasis correlate with "in vivo" expression by Candida albicans of the carbohydrate epitope recogn…

2004

Background: The morphogenetic conversion between yeast and hyphal growth forms appears to be crucial in the pathogenesis of invasive candidiasis, and can be regulated by environmental signals such as extracellular pH. Aims: To characterise the epitope recognised by monoclonal antibody 1H4, and to evaluate the expression of its corresponding epitope in Candida albicans cells under different conditions of pH and temperature, and “in vivo”, in tissue samples from patients with human candidiasis. Methods: Monoclonal antibody 1H4 was generated against the 58 kDa cell wall mannoprotein of C albicans (mp58), and was further characterised by immunoblot analysis, periodate treatment of the antigenic…

Hyphal growthAntigens Fungalmedicine.drug_classMonoclonal antibodyEpitopePathology and Forensic MedicineMicrobiologyEpitopesMiceAntigenCandida albicansmedicineAnimalsHumansCandida albicansMice Inbred BALB CMembrane GlycoproteinsbiologyMacrophagesfungiCandidiasisfood and beveragesAntibodies MonoclonalOriginal ArticlesGeneral MedicineHydrogen-Ion Concentrationmedicine.diseasebiology.organism_classificationAgglutination (biology)ImmunohistochemistrySystemic candidiasisJournal of Clinical Pathology
researchProduct

Stabilisation of mixed peptide/lipid complexes in selective antifungal hexapeptides

2004

AbstractThe design of antimicrobial peptides could have benefited from structural studies of known peptides having specific activity against targetmicrobes, but not toward other microorganisms. We have previously reported the identification of a series of peptides (PAF-series) activeagainst certain postharvest fungal phytopathogens, and devoid of toxicity towards E. coli and S. cerevisiae [Lo´pez-Garci´a et al. Appl.Environ. Microbiol. 68 (2002) 2453]. The peptides inhibited the conidia germination and hyphal growth. Here, we present a comparativestructural characterisation of selected PAF peptides obtained by single-amino-acid replacement, which differ in biological activity. Thepeptides w…

Hyphal growthCircular dichroismAntifungal AgentsProtein ConformationStereochemistryFungicideAntimicrobial peptidesBiophysicsPeptideMicrobial Sensitivity TestsBiochemistryMembrane LipidsmedicinePostharvestMicelleschemistry.chemical_classificationMembranesCircular DichroismBiological activityCell BiologyPlantsSpectrometry FluorescenceConformational analysisMembraneEnergy TransferMechanism of actionBiochemistrychemistryDrug DesignSpecific activitymedicine.symptomAntimicrobial peptidePeptide–lipid interactionOligopeptidesBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Candida albicans ABG1 gene is involved in endocytosis.

2009

The human fungal pathogen Candida albicans undergoes reversible morphogenetic transitions between yeast, hyphal and pseudohyphal forms. The fungal vacuole actively participates in differentiation processes and plays a key role supporting hyphal growth. The ABG1 gene of C. albicans encodes an essential protein located in the vacuolar membranes of both yeast and hyphae. Using fluorescence microscopy of a green fluorescent protein-tagged version of Abg1p, a fraction of the protein was detected in hyphal tips, not associated with vacuolar membranes. Live cell imaging of emerging germ tubes showed that Abg1p migrated to the polarized growth site and colocalized with endocytic vesicles. Phenotypi…

Hyphal growthFungal proteinRecombinant Fusion ProteinsfungiSpitzenkörperGreen Fluorescent ProteinsHyphaeGerm tubeGeneral MedicineVacuoleBiologybiology.organism_classificationEndocytosisApplied Microbiology and BiotechnologyMicrobiologyEndocytosisCell biologyArtificial Gene FusionFungal ProteinsEndocytic vesicleMicroscopy FluorescenceGenes ReporterCandida albicansHumansCandida albicansFEMS yeast research
researchProduct

Pseudohyphal Regulation by the Transcription Factor Rfg1p in Candida albicans

2010

ABSTRACT The opportunistic human fungal pathogen Candida albicans is a major cause of nosocomial infections. One of the fundamental features of C. albicans pathogenesis is the yeast-to-hypha transition. Hypha formation is controlled positively by transcription factors such as Efg1p and Cph1p, which are required for hyphal growth, and negatively by Tup1p, Rfg1p, and Nrg1p. Previous work by our group has shown that modulating NRG1 gene expression, hence altering morphology, is intimately linked to the capacity of C. albicans to cause disease. To further dissect these virulence mechanisms, we employed the same strategy to analyze the role of Rfg1p in filamentation and virulence. Studies using …

Hyphal growthHyphaHyphaeVirulenceBiologyMicrobiologyMicrobiologyFungal ProteinsMiceGene Expression Regulation FungalCandida albicansAnimalsHumansCandida albicansMolecular BiologyRegulator geneMice Inbred BALB CFungal proteinVirulenceCandidiasisGene Expression Regulation DevelopmentalArticlesGeneral Medicinebiology.organism_classificationCorpus albicansRepressor ProteinsComplementationFemaleEukaryotic Cell
researchProduct

Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network.

2021

International audience; For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common my…

Hyphal growthRhizophagus irregularisProteomicsProteomeNitrogen[SDV]Life Sciences [q-bio]Glyoxylate cyclemycorrhizal symbiosisMicrobiologyPlant RootsPhosphatesFungal Proteins03 medical and health sciencesSoilNutrientcommon mycelial networkSymbiosisGeneticsMycorrhizal networkSymbiosisMycelium030304 developmental biology2. Zero hungerphosphate nutrition0303 health sciencesbiology030306 microbiologyfungiFungi15. Life on landextra-radical myceliumbiology.organism_classificationshotgun proteomicBiochemistryProteomeFungal genetics and biology : FGB
researchProduct